
Professional PostgreSQL
scheduling made easy
Pavlo Golub

Senior Database Consultant

pavlo.golub@cybertec.at

@PavloGolub

1

PostgreSQL
Database
Services

24/7 Support

Performance
Tuning

Consulting

High
Availability

Training

Development

Replication

Cloud

2

Setup

CLIENT
SECTORS
▪ ICT

▪ University

▪ Government

▪ Automotive

▪ Industry

▪ Trade

▪ Finance

▪ etc.

● Different levels of database scheduling

● PostgreSQL scheduling approaches

● PostgreSQL scheduling tools available

● pg_timetable: Why it is so cool ;)

 pg_timetable: Today’s agenda

Why use a
scheduler

● Maintenance

● Data Import / Export

● Backup / Restore

● Analytical Processing

● Monitoring

● External Actions

Different levels
of scheduling

● Built-in Schedulers

● System Schedulers

● PostgreSQL land

● Microsoft SQL

● Oracle

● MySQL (MariaDB)

● DB2

Built-in Schedulers

Many people say it's not necessary, and probably some hackers

would oppose it; but mainly I think we just haven't agreed (or

even discussed) what the design of such a scheduler would look

like. For example, do we want it to be able to just connect

and run queries and stuff, or do we want something more

elaborate able to start programs such as running pg_dump?

What if the program crashes -- should it cause the server to

restart? And so on. It's not a trivial problem.

Alvaro Herrera

Built-in Scheduler in PostgreSQL

Cons:

SYSTEM SCHEDULING

Tools available: ● cron, anacron, etc.

● Windows Task Scheduler

● Google Cloud Tasks, Amazon Scheduled

Tasks

● Kubernetes CronJob

They don’t know anything about databases.

● pgAgent

● jpgAgent

● pg_cron

● pgBucket (runseven)

● pgAutomator (discontinued?)

● maybe more?

SCHEDULERS IN “PostgreSQL land”

● The oldest one!

● Was a part of pgAdmin, now distributed independently

● Written in C++

● Stores configuration in the database

● SQL and SHELL tasks

● https://github.com/postgres/pgagent

pgAgent

 ● pgAgent compatible

● Written in Java

● Minimizes the pain of switching for existing pgAgent users

● Provides more stable and feature rich agent implementation

● SQL and SHELL tasks, with partial email task support

● Parallel task execution

● Can kill running jobs

● Supports job and task timeout

● https://github.com/GoSimpleLLC/jpgAgent

jpgAgent

 ● Very old

● Implemented as PostgreSQL background worker

● Written in C

● Uses libpq to open a new connection to the databases

● SQL only tasks

● Jobs are executed locally with permissions of the current user

● Superusers may update sys table to allow remote execution

○ Need to use .pgpass to authenticate with the remote server

● https://github.com/citusdata/pg_cron/

pg_cron

● Under active development

● Written in C++

● Uses dedicated configuration file

● SQL and SHELL tasks

● Special cascaded/event tasks

● Auto job disable

● https://bitbucket.org/dineshopenscg/pgbucket/

pgBucket (runseven)

pg_timetable: CREATING THE
ULTIMATE SCHEDULER

● Main design principles

● Architecture

● Features

● Demo

MAIN PRINCIPLES
● 1-minute setup

○ Docker image (“cloud ready”)

○ One binary written in Go

● Non-invasive

○ No extensions or superuser needed for base functionality

○ Schema auto deployment

● Huge number of jobs

● Cross platform support

● SQL, PROGRAM and BUILT-IN tasks available

Comparison table

Comparison table

Comparison table

BUILDING BLOCKS: TASKS AND CHAINS

● A task is the most basic building block

○ Tasks can take parameters

○ e.g. “Download data”, “Aggregate data”, etc

● A chain is a sequence of tasks

○ Arrange tasks in a large sequence of things

BUILDING BLOCKS: Tasks and chains

Start Transaction

Download data

Aggregate

Delete file

Commit

 ● Cron-style scheduling

○ People are used to that

○ Necessary for simple things

● Ability for more complex flows

○ By adding “chains”

● Enhanced logs

○ Workflow log and task execution log

○ Database side log means that a GUI can be written

○ Not true for text logs

DESIGN: Which features are necessary?

 ● Concurrency implemented using light weight goroutines

○ Efficiency does matter in case of xxx.xxx jobs

● Fully database driven configuration

○ Backups are easy and centralized

○ GUIs can be produced easily

○ Easy to search, modify

○ Simplified versioning

DESIGN: Which features are necessary?

 ● Concurrency protection

○ Make sure that identical jobs cannot run concurrently

○ Example: Ensure that only one backup is running, etc.

● Optionally ignore errors

● Optional exclusive execution

DESIGN: Which features are necessary?

 ● Self-destructive chains

○ Basically for asynchronous execution

○ Try to execute one and kill it when done

○ Otherwise try again

DESIGN: Which features are necessary?

This is super important for GUI applications
They can do async execution using only INSERT

 ● Workers (Golang)

● Config database (PostgreSQL)

● Optional target databases

● Optional monitoring

○ pgwatch2

○ psql

○ Anything you want ...

■ Everything is in tables

ARCHITECTURE AND COMPONENTS

● ✅ Task / Chain abortion

● ✅ Asynchronous chain execution

● ⏳OnError Chain / Task

● ✅ Support interval scheduling, e.g. '@interval(00:00:10)'

● ✅ Collect client messages for tasks, e.g. 'RAISE NOTICE foo'

● ✅ Tool for debugging standalone tasks

● ✅ Graphical User Interface

● ⏳ BGW implementation

TODO

 $ pg_timetable -c loader postgresql://scheduler@localhost/timetable
2022-04-07 13:04:45.578 [INFO] Database connection established
2022-04-07 13:04:45.580 [INFO] Executing script: DDL
2022-04-07 13:04:45.760 [INFO] Schema file executed: DDL
2022-04-07 13:04:45.760 [INFO] Executing script: JSON Schema
2022-04-07 13:04:45.764 [INFO] Schema file executed: JSON Schema
2022-04-07 13:04:45.764 [INFO] Executing script: Cron Functions
2022-04-07 13:04:45.768 [INFO] Schema file executed: Cron Functions
2022-04-07 13:04:45.769 [INFO] Executing script: Job Functions
2022-04-07 13:04:45.785 [INFO] Schema file executed: Job Functions
2022-04-07 13:04:45.786 [INFO] Configuration schema created...
2022-04-07 13:04:45.792 [INFO] Accepting asynchronous chains execution requests...
2022-04-07 13:04:45.794 [INFO] [count:0] Retrieve scheduled chains to run @reboot
2022-04-07 13:04:45.796 [INFO] [count:0] Retrieve interval chains to run
2022-04-07 13:04:45.974 [INFO] [count:0] Retrieve scheduled chains to run
...

Getting started

$ pg_timetable -c loader postgresql://scheduler@localhost/timetable
2022-04-07 13:04:45.578 [INFO] Database connection established
2022-04-07 13:04:45.580 [INFO] Executing script: DDL
2022-04-07 13:04:45.760 [INFO] Schema file executed: DDL
2022-04-07 13:04:45.760 [INFO] Executing script: JSON Schema
2022-04-07 13:04:45.764 [INFO] Schema file executed: JSON Schema
2022-04-07 13:04:45.764 [INFO] Executing script: Cron Functions
2022-04-07 13:04:45.768 [INFO] Schema file executed: Cron Functions
2022-04-07 13:04:45.769 [INFO] Executing script: Job Functions
2022-04-07 13:04:45.785 [INFO] Schema file executed: Job Functions
2022-04-07 13:04:45.786 [INFO] Configuration schema created...
2022-04-07 13:04:45.792 [INFO] Accepting asynchronous chains execution requests...
2022-04-07 13:04:45.794 [INFO] [count:0] Retrieve scheduled chains to run @reboot
2022-04-07 13:04:45.796 [INFO] [count:0] Retrieve interval chains to run
2022-04-07 13:04:45.974 [INFO] [count:0] Retrieve scheduled chains to run
...

Getting started: session

 $ pg_timetable -c loader postgresql://scheduler@localhost/timetable2022-04-07 13:04:45.578 [INFO] Database connection established
2022-04-07 13:04:45.580 [INFO] Executing script: DDL
2022-04-07 13:04:45.760 [INFO] Schema file executed: DDL
2022-04-07 13:04:45.760 [INFO] Executing script: JSON Schema
2022-04-07 13:04:45.764 [INFO] Schema file executed: JSON Schema
2022-04-07 13:04:45.764 [INFO] Executing script: Cron Functions
2022-04-07 13:04:45.768 [INFO] Schema file executed: Cron Functions
2022-04-07 13:04:45.769 [INFO] Executing script: Job Functions
2022-04-07 13:04:45.785 [INFO] Schema file executed: Job Functions
2022-04-07 13:04:45.786 [INFO] Configuration schema created...
2022-04-07 13:04:45.792 [INFO] Accepting asynchronous chains execution requests...
2022-04-07 13:04:45.794 [INFO] [count:0] Retrieve scheduled chains to run @reboot
2022-04-07 13:04:45.796 [INFO] [count:0] Retrieve interval chains to run
2022-04-07 13:04:45.974 [INFO] [count:0] Retrieve scheduled chains to run
...

Getting started: new schema

 $ pg_timetable -c loader postgresql://scheduler@localhost/timetable
2022-04-07 13:04:45.578 [INFO] Database connection established
2022-04-07 13:04:45.580 [INFO] Executing script: DDL
2022-04-07 13:04:45.760 [INFO] Schema file executed: DDL
2022-04-07 13:04:45.760 [INFO] Executing script: JSON Schema
2022-04-07 13:04:45.764 [INFO] Schema file executed: JSON Schema
2022-04-07 13:04:45.764 [INFO] Executing script: Cron Functions
2022-04-07 13:04:45.768 [INFO] Schema file executed: Cron Functions
2022-04-07 13:04:45.769 [INFO] Executing script: Job Functions
2022-04-07 13:04:45.785 [INFO] Schema file executed: Job Functions
2022-04-07 13:04:45.786 [INFO] Configuration schema created...
2022-04-07 13:04:45.792 [INFO] Accepting asynchronous chains execution requests...
2022-04-07 13:04:45.794 [INFO] [count:0] Retrieve scheduled chains to run @reboot
2022-04-07 13:04:45.796 [INFO] [count:0] Retrieve interval chains to run
2022-04-07 13:04:45.974 [INFO] [count:0] Retrieve scheduled chains to run
...

Getting started: workflow

 $ psql -d timetable
psql (14.1)

timetable=> \dt timetable.*
 List of relations
 Schema | Name | Type | Owner
-----------+----------------+-------+-----------
 timetable | active_session | table | scheduler
 timetable | chain | table | scheduler
 timetable | execution_log | table | scheduler
 timetable | log | table | scheduler
 timetable | migration | table | scheduler
 timetable | parameter | table | scheduler
 timetable | run_status | table | scheduler
 timetable | task | table | scheduler
(8 rows)

Schema: tables

Remove accents

Download file from the internet

Clean table

Import new data from processed file

EXAMPLE: Adding a chain

Ignore the errors

 timetable=# \i samples/Download.sql
NOTICE: Step 1 completed. DownloadFile task added
NOTICE: Step 2 completed. Unacent task added
NOTICE: relation "location" already exists, skipping
NOTICE: Step 3 completed. Import task added
DO
timetable=#

Adding a chain

TESTING A CHAIN

● Session start

● Check for tasks

● Check if chain can be executed

● Execute chain task by task

○ Ignore errors if needed

● Check if chain is finished

● Commit chain transaction

2022-04-07 07:26:12.702 [INFO] Database connection established
2022-04-07 07:26:12.717 [INFO] Accepting asynchronous chains execution requests...
2022-04-07 07:26:12.727 [INFO] [count:0] Retrieve scheduled chains to run @reboot
2022-04-07 07:26:12.737 [INFO] [count:0] Retrieve interval chains to run
2022-04-07 07:26:13.151 [INFO] [count:501] Retrieve scheduled chains to run
2022-04-07 07:26:13.159 [INFO] [chain:12] Starting chain
2022-04-07 07:26:13.162 [INFO] [chain:8] Starting chain
2022-04-07 07:26:13.171 [INFO] [chain:8] [task:10] Starting task
2022-04-07 07:26:13.171 [INFO] [chain:12] [task:14] Starting task
2022-04-07 07:26:13.198 [INFO] [chain:12] [task:14] Task executed successfully
2022-04-07 07:26:13.276 [INFO] [chain:8] [task:10] Task executed successfully
2022-04-07 07:26:13.628 [INFO] [chain:2] Starting chain
2022-04-07 07:26:13.635 [INFO] [chain:2] [task:2] Starting task
2022-04-07 07:26:13.658 [INFO] [chain:10] Starting chain
2022-04-07 07:26:13.667 [INFO] [chain:10] [task:12] Starting task
2022-04-07 07:26:13.783 [INFO] [chain:9] Starting chain
2022-04-07 07:26:13.790 [INFO] [chain:9] [task:11] Starting task
2022-04-07 07:26:13.795 [INFO] [chain:7] Starting chain
2022-04-07 07:26:13.796 [INFO] [chain:16] Starting chain
2022-04-07 07:26:13.802 [INFO] [chain:7] [task:9] Starting task
2022-04-07 07:26:13.803 [INFO] [chain:16] [task:18] Starting task
2022-04-07 07:26:13.803 [INFO] [chain:12] Chain executed successfully
2022-04-07 07:26:13.811 [INFO] [chain:18] Starting chain
2022-04-07 07:26:13.816 [INFO] [chain:18] [task:20] Starting task
2022-04-07 07:26:13.828 [INFO] [chain:11] Starting chain
2022-04-07 07:26:13.836 [INFO] [chain:11] [task:13] Starting task
2022-04-07 07:26:13.870 [INFO] [chain:4] Starting chain
...

github.com/cybertec-postgresql/pg_timetable

Improvement ideas?

User input very much appreciated!

#StandWithUkraine

Don’t be a stranger:

https://www.cybertec-postgresql.com/en/blog/

Thanks

HOW CAN WE HELP?

● Send money to right orgs
● Hire Ukrainian people
● Stop business in russia
● Suppot Ukrainians
● Spread the truth

